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Fig.5 shows the form of the oscillations of the beam at M= hf., i.e. at the boundary of 
the domain of stability. The values Bt = 0, rid, r/2, 3~14 correspond to the curves l-4. A wave 

appears near the mass M, moving in a direction opposite to thatof the mass. However, the 

directions of the motions of the mass nad the wave with respect to the beam are the same. 
We note that the system in question can be used as a model of a pipe with a flow of fluid, 

made thicker at some place (increased mass) , in the case when the rstio of the running mess of 
the pipe and the fluid is small. If the ratio is not small, then additional terms must be 
introduced in (1) /3/. 
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AVERAGED DESCRIPTION OF THE OSCILLATIONS IN A ONE-DIMENSIONAL, 
RANDOMLY INHOMOGENEOUS MEDIUM* 

A.YU. BELYAEV 

The Cauchy problem fcr a wave equation with coefficients depending randomly 
on the spatial coordinate is considered. An equation describing the 
evolution of the expectation of the solution is derived assurr.i.ng that the 
fluctuations of the coefficients and the correlation radius are small. 
The averaged equation, unlike the initial equation, is irreversible with 
respect tc time, and has the form of a one-dimensional equation of motion 
of a viscoelastic material. The coefficient of effective viscosity obtained 
is found to be proporticnal tc the intensity of fluctuations of the 
random characteristics of the inhomogeneous medium. 

Numerous problems of the propagation of elastic, electromagentic and other waves in an 
inhomogeneous medium, rediice to soiving the equation 

(1) 

with initial data for I 
of the medium oscillate 
of the wave propagation 

= 0. If the functions P(Z) and (1 (r) characterizing the properties 
rapidly, then the problem arises of producing an averaged description 
process. In randomly inhomogeneous continua the non-coherent character 

of wave dispersion by inhomogeneities of the medium produces a decay of solutions, which 
leads to the irreversibility of the averaged equations. 
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A semi-empirical method of deriving the irreversible averaged equations was used in /l/ 
in the Case of a two-dimensional continuum representing a homogeneous elastic material with 
randomly distributed inclusions at low concentration. Equations were derived in /2/ for the 
case when the fluctuations in the characteristics of the medium were small, describing the 

evolution of the expectation of the solution of (l), by expanding over the corresponding small 
parameter. It will, however, be shown below that the Cauchy problem with initial data is ill- 
posed for the equations obtained in it. 

In the Present paper the equation for determining the averaged solution of the initial 
problem (1) is constructed using the variational method. The equation has the form of a one- 
dimensional equation of motion of a homogeneous, viscoelastic material, and the Cauchy problem 
for it is correct. In the variational approach the problem of initial data is solved auto- 
matically, while in /2/ it was not discussed at all. 

Let the initial data for (1) have the form 
U (0, r) = I (I), u, (0, 2) = g(z) (2) 

Equation (1) can be obtained fromthevaritional principle /3, 4/ 
&Y(U) = 0 (3) 

where the functional H(U) is defined on the set of functions V&Z) satisfying the first 
condition of (2) as follows: 

T 0~ OD 

H (IL) = + 1 df s ax [p (r) u, (f, I) U[ (T - t , 4 +a(z)U*(T-t,I)UI(t’I)l- 
s 

d+gwP(4u(T,4 (4) 

0 -m -0D 

The subscripts t and z accompanying the function u denote partial derivatives in t and 
2, respectively. 

The variational principle (3) yields Eq.(l) and the second initial condition of (2). 
If the functions p(z) and 0 (2) are random, then the solution of (1) with initial con- 

ditions (2) will also be a random function. We shall denote its expectation M,(rr(t, t)] by u(t,r). 
We shall derive the equations for determining r(~,z) using a method described in /5/. The 

method is as follows. We shall consider the functional I(U)= MIX(u)] on the set of random 
functions IL@, z) satisfying the first condition of (2). The conditions of stationarity of 
this functional coincide with the initial equation (1) and second initial condition of (2). 
We shall vary the functional I(U) in two stages. First we shall find its stationary point 
under the constraint 

M [U (1, 11) = 1: (I, I) (5) 

where L.(~,z) is a non-random function satisfying the condition 
L.(O, II = f (I) (6) 

The value of the functional I(U) at the stationary point will represent a functional 
dependent on u. Let us denote it by IO(~). The required equation for determining v(1.r) is 
obtained from the variational principle 610 (8.j = 0. 

The variation cf the functional I(U) has the form 

BY virtue of the first condition of (Zj, the variations 6~ vanish at t= 0, and have 
zero expectation by virtue of the constraint (S), otherwise they are arbitrary. 

The necessary conditions of stationarity of the functional I(U) have the form 

p (z) tlfl - (a (rj uljx = h(r), p (4 lu, ('A zj -g (41 = P (f) (7 

where h(l,=j and p(zj are non-random functions playing the part of Lagrange mutlipliers under 
the constraint (5). Having solved these equations for U (I, 4 and substituted the value 
obtained into the functional I(U), we obtain the functional IO(v). 

Let us make the following assumption concerning the functions p (z) and a (I). Let their 

values differ only slightly from the expectations, which are assumed independent of I and are 

denoted by p0 and Q, respectively. We denote the deviations of the functions p(z) and a(s) 

from pp and a0 by pz (I) and % (t), and the maximum deviation by 6. 
We shall solve Eqs.(7) by expanding the unknown fuXtiOns u (t, I), h (t, L). P (2) in a power 

series in terms of the parameter 6. The expressions for the functional lo(v) calculated with 
an 3ccuracy of up to and including terms of order @, can be reduced to the form 

lo(v) = M {+ 5 dt 1 dr [poo, (T -t, I) u, (t, r) -+-cot, (T -t, crJ[, I) + (8) 

PI (I) c,(t JP~,, (G I) + a1 (I) V,V, r.) U,=(T - t, z)] - s [ dr POK(~U(F,~+ 
1 
T Pl (I) g (I) u1 CT. I,1 

-m 
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where the function UI (G I) is expressed in terms of v(r,r) as follows: 

Further simplifications of expression (8) are based on the assumption that 01 (2) and 

PI (I) are homogeneous, isotropic random functions with correlation radius much less than the 
characteristic scale of variation of the functions f(r) and g(t). 

Let us introduce the notation 

Q,=p;* 
5 M [PI (+)PI (x + ~)ldY, Ed = a: 5 

~l~l(~)~1(~iW)l~U 
-0D -m 

The numbers~ e. and eg are independent of tby virtue of the homogeneity of the random 
functions p1 (I) and a1 (2). It can be shown that they are non-negative and proportional to the 
correlation radii of these functions. We shall turn our attention to the asymptotic form of 
"(1,~) when e,,~, tends to zero. 

If we retain in the functional (8) the principal and first-order terms in the parameters 
%7, Q assuming that the function u(i,r) is independent of E~,Q,, then the functional will take 
the form 

Varying this expression over u(t,r) under the constraint (61 and equating the variation 
to zero, we obtain 

POU,, - dL.._ - (?r)-'pOFpL.,,, - (2c)-'a,F,r'lx, = 0 (9) 

and some initial conditions for it. We car reduce the system of equations obtained in /2/ to 
this form. We can show however, that the Cauchy problem is ill-posed for the resulting 
equation if el,&Oo. This follows from the fact that soluticns of (9) of the form 

ei(hr-u8fl with k real, increasing exponentially with time, exist, 
The reason for the ill-posed response is, that in the functional I,(c) the parameters 

tending to zero accompany the terms with higher-order derivatives. This leads to the appear- 
ance of boundary value problem in I. Equation (9; car., at the same time, by asymptotically well- 
posed in the sene that the required function I:((,Y) satisfies this equation outside the boundary 
layer with an accuracy of up to terms of order o (E~-E&. We cannot, however, use it to obtain 
the function 1'. 

In such situations, the asymptotic analysis cannot be reduced to expanding the functional 
in a power series in small parameters. We shall apply the variaional-asymptotic method /6/. 

At the first stage we retain in the functional (8) the terms that are principal with 
respect to the parameters E.. Ep Varying such a functional under the constraint (O‘, we 
obtain the following equation and initial condition: 

pal‘,, = dl.,,. L', (0, I) = g Lr) (10) 
We denote the solution of this equation by L'" (1. I), and write the required solution in 

the form L‘ (1. I) E L'O (I, I) - Q(l. t) 

By virtue of the constraint (6) the function L'1 (I, I) must vanish at I = 0. 
is asymptotically smaller than L'~. 

Assuming that 
c1 we retain in the functional (8) the principal terms in 
“1 and principal terms containing both co and L',. 
can be written, 

This yields the functional I,(L.,). which 
taking Eq.(lO) into account, in the form 
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Equating the variation of the functional II to zero, we obtain the equation andinitial 
condition for determining u, (1, z) 

pl"l,,--~&= (W-~@0=&,,! +Qpzoul+ir) (11) 
"11 (0. I) = 'Itc kp + PO) I,,W 

to which we should add the initial condition V, (0, 2) = 0 following from the constraint (6). 
In addition to producing the function V, (I, 2) (10) , Eq.(ll) yields the solution of the problem 
in question. We note that the approach adopted here does not give rise to ill-posed problems. 

Relations (10) and (11) can be combined within the limits of accuracy used, into a single 
equation in terms of the function "(I, t) sought 

po",,--v,,- (W1%(Pp +EJ Vt*, = 0, 0 (0,~) = f (t), 
u, (OVZ) = 8 (I) +'iz (*0+PP)1*s(2) 

It has the form of an equation of motion of a one-dimensional viscoelastic medium. Its 
solution, with the above initial conditions , yields an asymptotically exact value for the 
averaged solution of,the initial equation (1) when f~P(~~+-e,,). 

When the values of time t are nearly zero, the averaged solution has been shown to have 
the character of a boundary layer, and more complicated equations are needed for its determina- 
tion, obtained by varying the functional (8). This explains the appearance of the last term 
in the second initial condition, which is not present in the exact formulation by virtue of 
relation (2) and of the definition of the averaged solution. The term in question describes 
the effect of the temporary boundary layer on the behaviour of the solution at finite times. 

The author thanks V.L. Berdichevskii for his interest and for discussing the results. 
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THE BUBNOV-GALERKIN METHOD IN THE NON-LINEAR THEORY OF HOLLOW, 
FLEXIBLE MULTILAYER ORTHOTROPIC SHELLS* 

V.F. KIRICHENKO, V.A. KRYS'KO and N.S. SUROVA 

The existence of solutions of a strongly non-linear system of differential 
equations describing, in the framework of the kinematic Timoshenko model 
/l/ adopted for the whole packet in toto /2/, the behaviour of a flexible, 
multilayer shell whose very layer is made of an inhomogeneous orthotropic 
material, is proved. To obtain an approximate solution of the problem 
in question, a procedure is proposed and justified, using the Bubnov- 
Galerkin (BG) method based on constructing an auxiliary quasilinear 
system of equations. A similar approach makes it possible to extend the 
method /3-6/of studying the convergence of the BG method to strongly 
non-linear systems of elliptic type equations, and to achieve the con- 
vergence of the sequence of approximate solutions to the exact solution 

in a space of any prescribed degree of smoothness, without imposing 
additional constraints on the initial data of the problem. 


